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Abstract

This report contains user documentation and timing results for
a collection of assembly language equation—solving codes for the

CRAY-i.
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I. Introduction

A. Implicitness
The most common application envisioned in the design of vector

processors has been the solution of partial differential equations.
It is now clear that many application—oriented researchers are
planning to use this vastly increased computational capability to
make solution algorithms more implicit [1]. For example, an algorithm
implicit by line (i.e., in one dimension) would become implicit by
strips (l+~ dimensions); or, more variables may be coupled in a multi—
variable problem. It is usually found that the larger the problem
and/or the more implicit the algorithm, the greater fraction of total
formulation and solution time is devoted to the latter. The coding
of the equation-solver then becomes a critical issue.

B. Vector Length
The vector length is the most obvious and general concern in

vector processing. The length results either from simultaneous oper—
ations on a number of similar systems or from the density of structure
(coupling of variables and grid nodes) within a single system.

In the solution of partial differential equations, the frequency
of variable updating determines the number of grid node equations that
can be formulated simultaneously. A point—Jacobi iteration would

- - 
- allow simultaneous formulation and updating of all variables. An ADI

- J~~- j method would allow simultaneous updating of variables along a line.
The coupling between grid points and between lines of grid points
assumed in the equation solution determines the number of systems of

— equations which can be solved simultaneously. Thus, if grid points
are assumed coupled in only one of two dimensions, then one can e~~ect
a system of tridiagonal or block tridiagonal matrices which can be
solved simultaneously. This in turn yields a vector length equal to
the number of uncoupled grid lines. On the other hand, an ADI method

• necessitates a solution of a single tridiagonal system.
The most obviously vectorizable algorithm would therefore be

i.’, one in which variables are simultaneously updated and minimal coupling
is assumed between grid nodes and/or variables at a grid point.

1-
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Iterative methods based on such schemes have notoriously poor conver-
gence. However, if simultaneity—-and hence vector length-—is reduced
to increase convergence rate, one must exploit single system density
to achieve long vectors. This density is usually manifested by rela-
tively small block sizes, bandwidths, or profiles in the matrix
structure.

C. Data Flow
With attention only to the vector length and with the use of a

high level language such as Fortran, it is not uncommon to obtain
only 20%-50% of the optimum CRAY-i performance in the equation solu-
tion. The data flow must also be considered to achieve high per-
formance, as illustrated by the following instances associated with
equation—solving codes.

(a) With short vector chained operations, the CRAY—l protocol
results in large bubbles in the arithmetic pipelines (2]. This occurs
in the processing of small dense blocks or narrow bandwidths.

(b) Vectors of any length on which little computation is per—
formed can create excessive data flow 1etween memory hierarchies.
This situation prevails in the above—mentioned simultaneous solution
of equations, and results from the inherent decoupling of such sys-
tems.

(c) General equation-solving codes——ones which can accomodate
arbitrary problem size parameters--may suffer from excessive data flow
visa vis a special code written for small problem sizes which can

- 
- maintain critical data in the cache memory. For example, a simultan-

eous block tridiagonal solver specialized to a fixed small block
Size can yield much higher execution rates than a general block tn—
diagonal solver (to be demonstrated).

The goal of high performance in spite of short vectors and
apparent data flow bottlenecks appears to suggest the need for a
pletbora of- specialized and highly—tuned codes to fill the same func—
tions as a single code executing on a scalar processor. However, a

S . mitigating effect is the computational dominance of the equation 
•

formulation over the equation solution as the coupling shrinks. This
observation is based on (a) the number of entries in a matrix being
of complexity O(nr), and (b) the triangular factonization operation
count being 0(~r+E), where E>0 and n represents the number of van-

I
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ables coupled to each other. Thus, more inefficiency can be tolerated
- . in the equation solver with small blocks, bands, and profiles.

D. Report Summary
- 

This report provides user documentation for three classes of codes
either expected to be of general utility or else resulting from on-
going specialized algorithm research for the CRAY-i. All were devel

I oped with aid of a CRAY-i timing simulator [3]. Many of the accumula-
tion kernels on which the high performance of the codes depend are
described in [4].

(a) Small dense systems. Highly-tuned accumulation kernels
yield codes which achieve high execution rates with small full and
banded systems.

(b) Simultaneous systems. Simultaneous full, banded, and block
tnidiagonal equation solvers have been developed around kernels which
reduce the previously-itentioned memory traffic. A variety of block
tnidiagonai solvers are included representing the utility of such
codes.

• (c) Single system, single variable, odd-even tridiagonal
solver. The use of a simulator was deemed essential to develop this

S challenging code which involves high memory traffic.
A fourth code, which can solve general single system sparse pro-

blems ranging fran block tridiagonal systems, general full and banded
matrices (which must be partitioned into 64 x 64 blocks for the CRAY-i),
and arbitrary-sparsity finite element problems, is also being prepared
[5].
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II. Codes for the solution of small , dense systems

A. Solution of a single full  unsymmetric system of equations (Calahan)
Description .

A system of equations A X = B is solved for X , where
A is an n x n real matrix and X and B are n x m real
matrices. Double column accumulation ~41 is used to
achieve full cache utilization during both the triang-
ular factorization of A and the forward and back sub-
stitution of B. When m = 1, an alternate substitution
routine is provided.

Subroutine call to triangularly factor A.
• CALL FULFAC (N, A, NDIMA , IERR)

where N is the dimension of A
A is the array representing A
NDIMA is the row dimension of array A
IERR contains a return code:

IE R R=O imp l jesN = O
• IERR > 0 is normal exit

IERR < 0 implies zero-valued pivot; position given
by I IERRI.

Subroutine call to forward and back substitute
CALL FULSOL (N, A, NDIMA, B, M, NDIMB)

where A contains the factored matrix
B is the array representing B
M is the number of columns of B

S • NDIMB is the row dimension of array B

Restrictions.
(a) N~~ 64

• (b) no pivoting
Cc) Fetches (but not stores) from main memory will occur

in FULFAC and FULSOL from the (n+l)st and (m+l)st
• columns of A and B; this space should contain data,

not ingtructj~,ng.

5- 
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When M = 1, a special call*
CALL FULSOL1 (N, A, NDIMA, D, M, DNIMB)

should be used for best efficiency. The A array is not altered
in either FULSOL OR FULSOL1.

Performance (simulated)
Matrix Factorizatjon Substitution
size

4 6.5/.47 4.5/.49
8 23/1.1 12/.77
16 58/3.6 27/1.5 (52/1.5)
32 95/18 44/3.7
64 122/113 60/11

[Execution rate (MFLOPS)]/ [tiine (kilo clocks)]
for solution of a full system of equations.
Result in parentheses for substitution of two
columns of B (M = 2).

-
.5

Sc

• - *PUL5OL1 will solve systems where M > 1 and may be useful when M is odd
and the extra column fetch of FULSOL is undesirable.

____________ 
I. -
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- B. Solution of a single banded unsymmetric system of equations
S 

- (Calahan) *
Description

A system of equations A x = b is solved for x, where A is
a banded real matrix and x and b are n x 1 real vectors.
The matrix A is stored in compressed form.

Subroutine call to triangularly factor A. -

CALL BANPAC (N, NB, A • NDIM)
where N is the dimension of A
NB is the half bandwidth ti.e., 2*NB+]. is the full bandwidth.)

- A is an array containing the elements of A
NDIM is the row dimension of A.

Subroutine call to forward and back substitute.
CALL BANSOL (N , NB, A NDIM, B)

where B contains the elements of b on entry and x on exit.

Comments
A is stored in packed form so that the (i, j )  position of A
is stored in the Ci - j  + NB) + (j - l)*NB address of A.

- 
•;~

•
~s •

*The factorization algorithm is a recoded version of a band solver
written by T. Jordan of LASL [6  ] [ 7 1. The substitution code is
identical to Jordan’s.

J.
- .1
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Half
- Bandwidth Factorization Substitution

2 3.8/ 14 6.2/8.1
4 9.6/ 19 11/8.1
8 23/28 20/8.1

16 52/4-c 36/8.1
32 88/210 65/18
64 117/1260 93/49

[Execution rate (MFLOPS) 1/ [time (kiloclocks)] for
solution of a banded system of equations. Sixty
four equations were solved except for half band—
widths of 32 and 64 , where 128 and 256 equations

I were solved, respectively.
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III. Codes for the Solution of Simultaneous Systems

A. Introduction
Let Z~ x = b represent the simultaneous system of equations

described by the block-diagonal matrix

A1 
- 

b~
1
~

A~
2
~ 0 ;(2) (1)

— 

= ~~ 3) 
- (1)

0 ~~~~~~. :

A (m) ;(m)

where the ~~~~ are identically—structured n x n real unsymmetric
matrices containing a~~~ and the and b (k) are n x 1 real
matiUces containing x~~~ and b~~~~, respectively.

Solutions of such systems on a vector machine have a number

of common characteristics.
1. Vectors are defined across the systems; e.g., the (i,j)

position~ of all A~~~ , k = 1, 2 . . .m , constitute a single vector .
2. Two storage array maps are common.

Map I. A , x , and b stored by column, then by row , then
by system, i .e . ,

(k)
~~ : 1 = l, 2 ,..n; j  = 1, 2 ,. .n; k = 1, 2,..m

i = l,2,..n; k = l , 2 ,..m

~~~~ : i = l,2 , . . n ;  k = i,2,..m

Map II. A, x, and b stored by system, then by column,
then by row.

~~~~~ : k = 3., 2,..m; i = 1,2,..n; j = l,2,..n
(k)

:- :~~~. x1 : k = l,2,..m; 1 = l,2,..n
(k)b~ : k = 1,2 , . .m;  i = i,2,..n

5k-;

~
. - i,. S 

• -
~~
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Map I may suffer from bank conflicts and loss of critical
chaining when the systems are a multiple of 8 address locations
apart.

A number of simultaneous system solvers are described in the

report.
1. Simultaneous full systems.
2. Simultaneous banded systems.
3. Simultaneous 3 x 3 block tridiagonal systems.
4. Simultaneous 5 x 5 block tridiagonal systems.

*I
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B. Solution of full unsymmetric simultaneous systems of equations
(Ames/Calahan)

. Description
m simultaneous systems of the form of (1) are solved when
the A~~ are full matrices.

Subroutine call to triangularly factor A.
CALL FUSFAC (A, N, M, IA)

where A is the array containing the full A (k) matrices of (1)
N is the dimension of the
M is the number Cm) of A (kT matrices
IA is the address displacement in array A between a~~
and ~~~~~

Subroutine call to forward and back substitute
CALL FUSSOL (B, IB)

where B is the array containing the right hand sides b and
the solutions x,

lB is the address displacement in array B between b~~ and
(k+l) 1

b~

Restrictions:
- (a) M~~~64

• (b) IA � N2, i.e., Map I is used.
Cc) no err monitoring of pivot reciprocation.

~S Performance (simulated )

Equations Number of Systems CM)
per

System (N) 4 8 16 32 64
- 

-
-

5 2 3.l/.52 5.8/.55 11/.61 l6/.80 21/1.2
S 4 5.7/2. 1 11/2.2 i-~/2 .6 28/3.5 35/5.6

8 9.6/11 18/il 32/13 45/18 53/31

(a) Factorizatjon

- 

, 
1 _____ ______ 

‘
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Equations Number of Systems CM )per -5ystem (N) 4 8 16 32 64

2 3.1/.62 6.1/.63 111.68 19/.80 26/1.2
4 6.7/1.3 13/1.4 23/1.6 35/2.0 44/3.2
8 11/3.4 21/3.6 37/4.1 53/5.8 62/9.8

(b) Substitution 
-

[Execution rate (MFLOPS)]/ ( t ime (kiloclocks) ]
of simultaneous equation solver .

.r!’ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~, ) .~~. 5 - —
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C. Solution of banded unsymmetric systems of equations (Ames/
Calahan)
Description:

m simultaneous systems of the form of (1) are solved when
the are banded. The A~~ are stored in compressed form.

Subroutine call to triangularly factor A and forward and back
substitute
CALL BANSIM (A, B, N, NB, M)

where A is an M*(2*NBIl)*N array of elements of the banded
A (k) matrices of (1)

B is an M*N array of elements of the right hand side
and the solution (k)N is dimension of the matrices A

NB is the half bandwidth (i.e., 2*NB+1 is the full bandwidth)
M is the number of systems.

Comments
A , a band matrix, is stored in packed form so that the (i,j)
position of A (k) is stored in the k + Ci - j + NB)*M +
(j — l)*M*(2*NB+l) address of A.

b is stored so that the ith position of is stored in the
k + Ci  - 1)*M address of B

— 
-

~~~~ 
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Performance (simulated)

Half- Number of systems (U)
bandwidth
(NB) 2 4 8 16 32 64

2 2.1/47.3 4.1/47.8 7.9/49.3 14.5/53.9 23 /68.0 31.3/100.

4 3.1/80.7 6.2/81.5 12./84.0 21.6/93.6 32.9/123. 43.0/188.

8 4.6/156. 9.2/157. 17.9/161. 31.1/186. 45.1/256. 56.5/409.

[Execution rates (MFLOPS)]/(time (kiioclocks)]
for factorization, forward, and back substitution
of simultaneous banded systems. Each system has
32 equations.

S c
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D. Simultaneous block tridiagonal systems (Sesek)

Descriptions
Consider the simultaneous block tridiagonal system A x = b
with kth system ~~(k) (k ) ~~Ck) , viz — —

(k ) (k ) (k) b~
3
~~ ll ~ ].2 ~.]. —1

(k) (k) (k) x~~ b(k)

~2l ~22 ~23 . —2 —2
(k) (k) x~~~I 

~32. ~33. . —3 —3

~ (k) A Ck) (k) ~(k)
~~ -l ,n-l —n-1, n ~n—1 —n-i

.A (k) A~~~ ~~
(k) b~~~—n, n—i —n , n —n -n

where the size of the square ~~~~ is of fixed size
to achieve high execution rates.

Subroutine call to triangularly factor A.5 
3 x 3 block size

CALL BT3FAC (A, B, C, M, N)

• 5 x 5 block size
- 

CALL BT5FAC (A, B, C, M, N)
where A, B, and C are defined below

- M is the number of systems
N is the number of diagonal blocks

Subroutine call to forward and back substitution

- 
3x3block size

CALL BT3SOL (A, B, C, D, M, N)
5 x 5 block size

CALL BT5SOL (A, B, C, D, M, N)

where D is defined below

5 . .
— S

.
~~~~~ 4.j
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Comments
Storage Map II is used for all A])~ x1, and b~. For block

size £ , the storage is given below for n diagonal blocks.

~rray A (m x 2. x £n)

[A11 A22”.A~~)

Array B (m x 2. x £ Cn-1))

[A A •..
~~~~ I 

S

12 23 n—l ,n
Array C (m x £ x £(n-].))

~~21 A32 ~~~~~~~~~~~~~~~

Array D Cm x £n)

(b1 b2
5 . .b

n i on entry to code

[X
i 
X~ •~~•X~ ] on exit from code

Performance (simulated)

Execution rates (MFLOPS)
Number
of 3x3 3x3 5x5 5x5

~ y~~ ems FACTOR. 
- 

SUBS. FACTOR. SUBS.
8 28.8 27.6 40.8 40.1
16 46.6 46.1 54.7 53.6

— 
32 60.3 

— 
58.7 65.5 64.].

• 64 67.9 
- 

66.3 72.0 70.0

MFLOP rates for solution of block tridiagonal systems
for two block sizes, as a function of the number

-~ 
-~ of simultaneous systems ( = vector length).
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IV. Code for the Solution of a Single Tridiagonal System ~alahaWSesek)

- 
. Description

A single tridiagonal system is completely solved by
cyclic (odd-even) reduction. This method requires

~2.7 times the floating point computation of a scalar
solution (important when evaluating the MFLOPS rates
below), but yields, for large matrices, nearly all
64-length vector operations.

Subroutine call to triangularly factor A.
CALL TRIFAC (A, B, C, N)

where A contains the diagonal stripe
B contains the super-diagonal stripe
C contains the sub-diagonal stripe
N is the number of diagonal elements

Subroutine call to forward and back substitute.
CALL TRISOL (A, B, C, D, N)

where D contains the right hand side on entry and
the solution on exit.

S 
Performance (simulated)

Matrix Factorization Forward & Back
size (N) ______________________ Substitution

15 8.22/1.30 4.80/2.02
31 13.5/ 1.79 7.65/2.75
63 21.1/2.45 11.8/3.71

-~ 
127 30.3/3.55 17.3/5.18
255 38.6/5.69 23.5/7.76

- 
-. 

- 
511 45.2/9.85 28.7/12.8
1023 49.7/18.1 32.7/22.5
204’ 52.4/34.3 35.6/41.3
4095 53.9/66.9 37.6/78.4

~ ~~~
- : 

-

- 

~~~~~~~~~ Timings of a cyclic reduction of a single tridiagonal system;
results given as [exectuion rate (MFLOPS)3/[time ~riloc1ocks)]

~~
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*
• Restrictions:

(1) No premature termination of reduction [8]

A (2) Single precision (10 digit) reciprocation of pivots.

Comments
The coding has been optimized for the large matrix case.

The execution is then easily shown to be memory-path bound.
The algorithm was therefore chosen to make a minimum number
of memory accesses per loop, utilizing shifting instead to
align operand vectors in the vectors registers. The resultant
coding was then optimized to achieve full memory-path utiliza-
tion. Simulation shows that 94, 87, 86% utilization is achieved
for the factorization, forward, and back substitutions, respect-
ively, as N + 

~~~~. Simulation also shows that as N ~~, approxi-
mately 2/3 of the execution time is needed during factorization
for this CAL version vis-a-vis a Fortran version written in—

: dependently.t

*The present version of the code -reçuires N t-i,r a positive integer.
- ~~

- 

~ 
tBy Dave Kersnaw, Lawrence Livermore Laboratory; full precision
reciprocation was used in this version.
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